Enrichment and proteomic identification of the Cryptosporidium parvum oocyst wall | Parasites and vectors

  • Platts-Mills JA, Babji S, Bodhidatta L, Gratz J, Haque R, Havt A, et al. Specific pathogen burdens of community-acquired diarrhea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Global Health. 2015;3:e564–75.

    PubMed PubMed Central Google Scholar

  • Checkley W, White AC Jr, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, et al. A review of the global burden, new diagnostics, therapies and vaccine targets for cryptosporidium. Lancet Infect Dis. 2015;15:85–94.

    Google Scholar PubMed

  • Ryan U, Hijjawi N, Xiao L. Foodborne cryptosporidiosis. Int J Parasitol. 2018;48:1–12.

    Google Scholar PubMed

  • Koehler AV, Korhonen PK, Hall RS, Young ND, Wang T, Haydon SR, et al. Using a bioinformatics-assisted primer design strategy to establish a novel nested PCR-based method for Cryptosporidium. Parasitic vectors. 2017;10:509.

    PubMed PubMed Central Google Scholar

  • Ryan U, Zahedi A, Paparini A. Cryptosporidium in humans and animals – a one health prophylaxis approach. Antiparasitic Immunol. 2016;38:535–47.

    CAS PubMed Google Scholar

  • Ježková J, Limpouchová Z, Prediger J, Holubová N, Sak B, Konečný R, et al. Cryptosporidium myocastoris nm sp. (Apicomplexa: Cryptosporidiidae), the species adapted to the nutria (Nutria Myocastor). Microorganisms. 2021;9:813.

    PubMed PubMed Central Google Scholar

  • Mount Villanueva. Infectious diseases: decryption Cryptosporidium. Nat Rev Drug Discov. 2017;16:527.

    CAS PubMed Google Scholar

  • Lendner M, Daugschies A. Cryptosporidium infections: molecular advances. Parasitology. 2014;141:1511–32.

    Google Scholar PubMed

  • Swale C, Bougdour A, Gnahoui-David A, Tottey J, Georgeault S, Laurent F, et al. Metal-captured inhibition of pre-mRNA processing activity by CPSF3 controls Cryptosporidium infection. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aax7161.

    Google Scholar PubMed

  • Chavez MA, White AC Jr. New treatment strategies and drugs in development for cryptosporidiosis. Expert Rev Anti Infect Ther. 2018;16:655–61.

    CAS PubMed Google Scholar

  • Jenkins MB, Eaglesham BS, Anthony LC, Kachlany SC, Bowman DD, Ghiorse WC. Importance of wall structure, macromolecular composition and surface polymers for the survival and transport of Cryptosporidium parvum oocysts. Environ Microbiol app. 2010;76:1926–34.

    CAS PubMed PubMed Central Google Scholar

  • Petry F. Structural analysis of Cryptosporidium parvum. Microsc Microanal. 2004;10:586–601.

    CAS PubMed Google Scholar

  • Possenti A, Cherchi S, Bertuccini L, Pozio E, Dubey JP, Spano F. Molecular characterization of a new family of cysteine-rich proteins from Toxoplasma gondii and ultrastructural evidence for oocyst wall localization. Int J Parasitol. 2010;40:1639–49.

    CAS PubMed Google Scholar

  • Cui Z, Wang R, Huang J, Wang H, Zhao J, Luo N, et al. Cryptosporidiosis caused by Cryptosporidium parvum subtype IIdA15G1 in a dairy farm in northwest China. Parasitic vectors. 2014;7:529.

    PubMed PubMed Central Google Scholar

  • Brar APS, Sood NK, Kaur P, Singla LD, Sandhu BS, Gupta K, et al. Peri-urban outbreaks of bovine calf diarrhea in northern India caused by Cryptosporidium in association with other enteropathogens. Epidemiol Infect. 2017;145:2717–26.

    CAS PubMed Google Scholar

  • Gharpure R, Perez A, Miller AD, Wikswo ME, Silver R, Hlavsa MC. Cryptosporidiosis outbreaks—United States, 2009-2017. MMWR Morb Mortal Wkly Rep. 2019;68:568–72.

    PubMed PubMed Central Google Scholar

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, et al. Complete sequence of the apicomplex genome, Cryptosporidium parvum. Science. 2004;304:441–5.

    CAS PubMed Google Scholar

  • Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, et al. The genome of Cryptosporidium hominis. Nature. 2004;431:1107–12.

    CAS PubMed Google Scholar

  • Snelling WJ, Lin Q, Moore JE, Millar BC, Tosini F, Pozio E, et al. Proteomic analysis and protein expression during the excystation of sporozoites from Cryptosporidium parvum (Coccidia, Apicomplexa). Cell proteomics Mol. 2007;6:346–55.

    CAS PubMed Google Scholar

  • Sanderson SJ, Xia D, Prieto H, Yates J, Heiges M, Kissinger JC, et al. Determination of the protein repertoire of Cryptosporidium parvum sporozoites. Proteomics. 2008;8:1398–414.

    CAS PubMed PubMed Central Google Scholar

  • Mauzy MJ, Enomoto S, Lancto CA, Abrahamsen MS, Rutherford MS. The Cryptosporidium parvum transcriptome during in vitro development. PLOS ONE. 2012;7:e31715.

    CAS PubMed PubMed Central Google Scholar

  • Arrowood MJ, Sterling CR. Isolation of Cryptosporidium oocysts and sporozoites using discontinuous sucrose and isopycnic Percoll gradients. J. Parasitol. 1987;73:314–9.

    CAS PubMed Google Scholar

  • Rasmussen KR, Larsen NC, Healey MC. Complete development of Cryptosporidium parvum in a human endometrial carcinoma cell line. Infect Immun. 1993;61:1482–5.

    CAS PubMed PubMed Central Google Scholar

  • Peckova R, Stuart PD, Sak B, Kvetonova D, Kvac M, Foitova I. Statistical comparison of methods of excystation in Cryptosporidium parvum oocysts. Parasitol veterinarian. 2016;230:1–5.

    Google Scholar PubMed

  • Harris JR, Petry F. Cryptosporidium parvum: structural components of the oocyst wall. J. Parasitol. 1999;85:839–49.

    CAS PubMed Google Scholar

  • Possenti A, Fratini F, Fantozzi L, Pozio E, Dubey JP, Ponzi M, et al. Global proteomic analysis of the oocyst/sporozoite of Toxoplasma gondii reveals commitment to a host-independent lifestyle. BMC Genomics. 2013;14:183.

    CAS PubMed PubMed Central Google Scholar

  • Niemann M, Wiese S, Mani J, Chanfon A, Jackson C, Meisinger C, et al. The proteome of the mitochondrial outer membrane of Trypanosoma brucei reveals new factors necessary for the maintenance of mitochondrial morphology. Cell proteomics Mol. 2013;12:515–28.

    CAS PubMed Google Scholar

  • Gene Ontology Consortium. The Gene Ontology Project in 2008. Nucleic Acids Res. 2008;36:D440–4.

    Google Scholar

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Res. 2012;40:D109–14.

    CAS PubMed Google Scholar

  • Zhang TY, Gao X, Wang DQ, Zhao JX, Zhang N, Li QS, et al. A single-pass type I membrane protein from the apicomplexan parasite Cryptosporidium parvum with nanomolar binding affinity to the host cell surface. Microorganisms. 2021;9:1015.

    CAS PubMed PubMed Central Google Scholar

  • Bouzid M, Hunter PR, Chalmers RM, Tyler KM. Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev. 2013;26:115–34.

    CAS PubMed PubMed Central Google Scholar

  • Fayer R, Nerad T. Effects of low temperatures on the viability of Cryptosporidium parvum oocysts. Environ Microbiol app. 1996;62:1431–3.

    CAS PubMed PubMed Central Google Scholar

  • Tu V, Mayoral J, Sugi T, Tomita T, Han B, Ma YF, et al. Enrichment and proteomic characterization of the cyst wall from in vitro Toxoplasma gondii Cysts. MBio. 2019. https://doi.org/10.1128/mBio.00469-19.

    PubMed PubMed Central Google Scholar

  • Zhou CX, Zhu XQ, Elsheikha HM, He S, Li Q, Zhou DH, et al. iTRAQ-based global proteomic profiling of Toxoplasma gondii oocysts during sporulation. J Proteomics. 2016;148:12–9.

    CAS PubMed Google Scholar

  • Munoz C, San Francisco J, Gutierrez B, Gonzalez J. Role of ubiquitin-proteasome systems in the biology and virulence of protozoan parasites. Biomed Res Int. 2015;2015:141526.

    PubMed PubMed Central Google Scholar

  • Shaw MK, He CY, Roos DS, Tilney LG. Proteasome inhibitors block intracellular growth and replication of Toxoplasma gondii. Parasitology. 2000;121:35–47.

    CAS PubMed Google Scholar

  • Ndao M, Nath-Chowdhury M, Sajid M, Marcus V, Mashiyama ST, Sakanari J, et al. Cysteine ​​protease inhibitor saves mice from deadly disease Cryptosporidium parvum infection. Chemother antimicrobial agents. 2013;57:6063–73.

    CAS PubMed PubMed Central Google Scholar

  • Tosini F, Agnoli A, Mele R, Gomez Morales MA, Pozio E. A novel modular protein from Cryptosporidium parvum, with ricin B and LCCL domains, expressed at the invasive stage of sporozoites. Parasitol from Mol Biochem. 2004;134:137–47.

    CAS PubMed Google Scholar

  • Templeton TJ, Lancto CA, Vigdorovich V, Liu C, London NR, Hadsall KZ, et al. The Cryptosporidium The oocyst wall protein is part of a multigene family and has a homolog in Toxoplasma. Infect Immun. 2004;72:980–7.

    CAS PubMed PubMed Central Google Scholar

  • Wiedmer S, Buder U, Bleischwitz S, Kurth M. Distribution and processing of Eimeria nieschulzi OWP13, a novel COWP family protein. J Eukaryote Microbiol. 2018;65:518–30.

    CAS PubMed Google Scholar

  • Spano F, Puri C, Ranucci L, Putignani L, Crisanti A. Cloning of the entire COWP gene from Cryptosporidium parvum and the ultrastructural localization of the protein during sex parasite development. Parasitology. 1997;114:427–37.

    CAS PubMed Google Scholar

  • Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE Database and Related Tools and Resources in 2019: Improving Support for Quantification Data. Nucleic Acids Res. 2019;47:D442–50.

    CAS PubMed Google Scholar

  • Comments are closed.